bookkeep Documentation
Release 2018

Yoel Cortes-Pena

May 31, 2019

Contents

1 SmartBook

2 UnitManager

3 Indices and tables
Python Module Index

Index

11

13

bookkeep Documentation, Release 2018

bookkeep is a python package for keeping track of units of measure and measurement bounds. The package mainly
features the SmartBook, a dictionary subclass that incorporates pint Quantity objects for managing units of measure.

Contents 1

https://pint.readthedocs.io/en/latest/

bookkeep Documentation, Release 2018

2 Contents

CHAPTER 1

SmartBook

class bookkeep.SmartBook (units={}, bounds={}, *args, source=None, **kwargs)

Create a dictionary that represents values with units of measure and alerts when setting an item out of bounds.
Bounds are always inclusive.

Parameters
units: [UnitManager or dict] Dictionary of units of measure.
bounds: [dict] Dictionary of bounds.
*args: Key-value pairs to initialize.
source: [str] Should be one of the following [-]:
* Short description of the smartbook.
* Object which the smartbook belongs to.
* None
**kwargs: Key-value pairs to initialize.
Class Attribute
Quantity: pint Quantity class for compatibility.
Examples
SmartBook objects provide an easy way to keep track of units of measure and enforce bounds.

Create a SmartBook object with units, bounds, a source description, and arguments to initialize the
dictionary:

>>> from bookkeep import SmartBook

>>> sb SmartBook (units={'T': 'K', 'Duty': 'kJ/hr'},
bounds={'T': (0, 1000)},
source='Operating conditions',
T=350)

(continues on next page)

https://pint.readthedocs.io/en/latest/

bookkeep Documentation, Release 2018

(continued from previous page)

>>> sb
{'T': 350 (K)}

The units attribute becomes a UnitManager object with a reference to all dictionaries (clients) it

controls. These include the SmartBook and its bounds.

>>> sb.units
UnitManager:
{'7': 'K',
'Duty': 'kJ/hr'}
>>> sb.units.clients
[{'T': 350 (K)}, {'T': (O, 1000)}]

Change units:

>>> sb.units['T'] = 'degC'
>>> sb

{'"T': 76.85 (degC)}

>>> sb.bounds

{'T': (-273.15, 726.85)}
Add items:

>>> sb['P'] = 101325

>>> sb

{'T': 76.85 (degC),
'P': 101325}

Add units:

>>> sb.units['P'] = 'Pa'
>>> sb
{'T': 76.85 (degC),

'P': 101325 (Pa)}

A BookkeepWarning is issued when a value is set out of bounds:

>>> sb['T'] = =300

—of bounds (-273.15 to 726.85 degC) .

__main__:1: BookkeepWarning: @Operating conditions: (=300 degC) is out,,

Nested SmartBook objects are easy to read, and can be made using the same units and bounds.

Create new SmartBook objects:

>>> sbl = SmartBook (sb.units, sb.bounds,
. T=25, P=500)
>>> sb2 = SmartBook (sb.units, sb.bounds,

Ce . T=50, Duty=50)

>>> sbl

{'T': 25 (degC),
'P': 500 (Pa)}

>>> sb2

{'T': 50 (degC),
'Duty': 50 (kJ/hr)})

Create a nested SmartBook object:

Chapter 1. SmartBook

bookkeep Documentation, Release 2018

>>> nsb = SmartBook (units=sb.units, sbl=sbl, sb2=sb2)
>>> nsb
{'sbl':
{'T': 25 (degC),
'P': 500 (Pa)},
'sb2"':
{'T': 50 (degC),
'Duty': 50 (kg/hr)}}

pint Quantity objects are also compatible, so long as the corresponding Quantity class is set as the Quantity

attribute.

Set a Quantity object:

>>> Q_ = SmartBook.Quantity

sbl.bounds['T'] = Q_((0, 1000), 'K")

sbl1['T'] = Q_ (100, 'K")

sbl

{VTV:
'P':

>>>
>>>
>>>

-173.15 degC,
500 (Pa)}

Setting a Quantity object out of bounds will issue a warning:

>>> sbl['T'] = Q_(-1, 'K")
__main__:1: BookkeepWarning: T (-274.15 degC) is out of bounds (-273.15
—to 726.85 degC).

Trying to set a Quantity object with wrong dimensions will raise an error:

>>> Q
>>> sbl1['T'] = Q_(100, 'meter')

DimensionalityError: Cannot convert from 'meter' ([length]) to 'degC' _
— ([temperature])

= SmartBook.Quantity

class Quantity

bounds

Dictionary of bounds.

boundscheck (key, value)

Return True if value is within bounds. Return False if value is out of bounds and issue a warning.
Parameters
key: [str] Name of value

value: [number, Quantity, or array]

classmethod enforce_boundscheck (val)
If val is True, issue BookkeepWarning whenever an item is set out of bounds. If val is False, ignore bounds.

classmethod enforce unitscheck (val)

If val is True, adjust Quantity objects to correct units. If val is False, ignore units.

nested_items ()

Return all key-value pairs of self and nested SmartBook objects.

nested_keys ()

Return all keys of self and nested SmartBook objects.

https://pint.readthedocs.io/en/latest/

bookkeep Documentation, Release 2018

nested_values ()
Return all values of self and nested SmartBook objects.

source
Short description or object it describes

units
Dictionary of units of measure.

unitscheck (key, value)

Adjust Quantity objects to correct units and return True.

Chapter 1. SmartBook

CHAPTER 2

UnitManager

class bookkeep.UnitManager (clients, *args, **kwargs)
Create a UnitManager object for handling units of measure of a list of dictionaries (clients). When an item in
UnitManger changes, all dictionaries in clients with the same key change values accordingly.

Parameters
clients: [list] All dictionaries managed by UnitManager object.
*args: Key/units pairs.
**kwargs: Key/units pairs.
Class Attribute
Quantity: pint Quantity class for compatibility.
Examples
Convert units of all clients using a UnitManager.

Create client dictionaries:

>>> car = {'weight': 4000, 'velocity': 50}
>>> plane = {'weight': 175000, 'velocity': 600}

Create a UnitManager object:

>>> um = UnitManager ([car, plane], weight="'lbs', velocity='mph')

>>> um

UnitManager:

{'weight': 'lbs',
'velocity': 'mph'}

Change units of clients:

>>> um['weight'] = 'kg'
>>> um['velocity'] = 'km/hr'

(continues on next page)

https://pint.readthedocs.io/en/latest/

bookkeep Documentation, Release 2018

(continued from previous page)

>>> car

{'weight': 1814.36948, 'velocity':
>>> plane

{'weight': 79378.66475000001,

'velocity':

80.46719999999999}

965.6063999999999}

Quantity objects are also compatible with UnitManager objects, so long as they are set as the “Quan-

tity” class attribute.

Set “Quantity” attribute:

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry ()
>>> UnitManager.Quantity = Q_ =

ureg.Quantity

Set a Quantity object and change units:

>>> car['weight']

>>> um|['weight'] =

>>> car

{'weight': <Quantity (1814.36948,
'velocity': 80.46719999999999>}

= Q_(4000,
lkgl

llbl)

'kilogram') >,

class Quantity

Chapter 2. UnitManager

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

bookkeep Documentation, Release 2018

10 Chapter 3. Indices and tables

Python Module Index

b

bookkeep, 7

11

bookkeep Documentation, Release 2018

12 Python Module Index

Index

B

bookkeep (module), 3, 7
bounds (bookkeep.SmartBook attribute), 5
boundscheck () (bookkeep.SmartBook method), 5

E

enforce_boundscheck () (bookkeep.SmartBook
class method), 5
enforce_unitscheck () (bookkeep.SmartBook

class method), 5

N

nested_items () (bookkeep.SmartBook method), 5
nested_keys () (bookkeep.SmartBook method), 5
nested_values () (bookkeep.SmartBook method), 5

S

SmartBook (class in bookkeep), 3
SmartBook.Quantity (class in bookkeep), 5
source (bookkeep.SmartBook attribute), 6

U

UnitManager (class in bookkeep), 7
UnitManager.Quantity (class in bookkeep), 8
units (bookkeep.SmartBook attribute), 6
unitscheck () (bookkeep.SmartBook method), 6

13

	SmartBook
	UnitManager
	Indices and tables
	Python Module Index
	Index

